A q-analogue of the supersymmetric oscillator and its q-supercoherent states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 276533
(http://iopscience.iop.org/0305-4470/27/19/023)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:45

Please note that terms and conditions apply.

A q-analogue of the supersymmetric oscillator and its q-supercoherent states

Ren-Shan Gong \dagger
CCAST (World Laboratory), PO Box 8730. Beijing 100080, People's Republic of China

Received 3 May 1994, in final form 28 June 1994

Abstract

A q-analogue of the supersymmetric oscillator is constructed out of q-boson and ordinary fermion creation and annihilation operators. q-supercoherent states are explicitly obtained for the q-deformed supersymmetric oscillator. They are shown to be eigenstates of both q-boson and fermion annihilation operators and to satisfy a completeness relation. The representation of the q-deformed superalgebra in super Bargmamn-Fock space is also discussed by means of the q-supercoherent states.

The coherent-state method [1] is a very powerful and elegant method for the study of algebra (or group) representations. Recently, this method has been used for the study of superalgebras [2-4] and q-deformed superalgebras [5, 6]. In [7], a q-analogue of the supersymmetric oscillator and corresponding q-superalgebra were constructed out of q-boson and q-fermion creation and annihilation operators. Because of the equivalence of both the q-deformed fermion and the ordinary fermion [8,9], therefore, it is worth reconstructing the q-deformed supersymmetric oscillator and q-superalgebra by using q-boson and ordinary fermion creation and annihilation operators. Furthermore, q supercoherent states as well as super Bargmann-Fock space have been introduced for the study of the q-supersymmetric oscillator and corresponding q-superalgebra. It can be seen that some new results obtained here are different from those in [7].

In the ordinary supersymmetric theory the superalgebra [10] is generated by H, Q_{+} and Q_{-}, where H (Hamiltonian) is the even generator and $Q_{ \pm}$are the odd generators of the superalgebra. They satisfy the following relations

$$
\begin{equation*}
\left\{Q_{+}, Q_{-}\right\}=H \quad\left[Q_{ \pm}, H\right]=0 . \tag{1}
\end{equation*}
$$

In order to construct the q-deformed superalgebra for the q-analogue of the supersymmetric oscillator, first of all we have to introduce the q-deformed boson oscillator [11, 12], whose algebra $\left\{a_{q}, a_{q}^{\dagger}, N_{\mathrm{B}}\right\}$ are defined by

$$
\begin{align*}
& {\left[a_{q}, a_{q}^{\dagger}\right]=\left[N_{\mathrm{B}}+1\right]-\left[N_{\mathrm{B}}\right]} \tag{2a}\\
& {\left[N_{\mathrm{B}}, a_{q}^{\dagger}\right]=a_{q}^{\dagger} \quad\left[N_{\mathrm{B}}, a_{q}\right]=-a_{q}} \tag{2b}
\end{align*}
$$

[^0]where
\[

$$
\begin{equation*}
[x]=\frac{q^{\prime \prime}-q^{-x}}{q-q^{-1}} . \tag{3}
\end{equation*}
$$

\]

In addition we introduce further the ordinary fermion creation and annihilation operators f^{\dagger} and f, respectively, and the fermion number operator $N_{\mathrm{f}}=f^{\dagger} f$. As is well known, they satisfy the following relations

$$
\begin{array}{ll}
\left\{f, f^{\dagger}\right\}=1 & f^{\dagger 2}=f^{2}=0 \\
{\left[N_{\mathrm{f}}, f^{\dagger}\right]=f^{\dagger}} & {\left[N_{\mathrm{f}}, f\right]=-f .} \tag{4b}
\end{array}
$$

Now let us discuss the q-supersymmetric oscillator. Defining the odd generators $Q_{ \pm}$ by

$$
\begin{equation*}
Q_{+}=a_{q} f^{\dagger} \quad Q_{-}=a_{q}^{\dagger} f \tag{5}
\end{equation*}
$$

which convert a q-boson into an ordinary fermion and vice versa, respectively, the Hamiltonian H of the q-supersymmetric oscillator may be written as

$$
\begin{equation*}
H=\left\{Q_{+}, Q_{-}\right\}=\left[N_{\mathrm{B}}\right]+\left(\left[N_{\mathrm{B}}+1\right]-\left[N_{\mathrm{B}}\right]\right) N_{\mathrm{f}} . \tag{6}
\end{equation*}
$$

It is obvious that in the $q=1$ case the Hamiltonian H given by (6) coincides with that of the supersymmetric oscillator [3]. Along with operators N_{B} and N_{f}, some more relations can be also derived easily

$$
\begin{align*}
& {\left[N_{\mathrm{B}}, N_{\mathrm{f}}\right]=0} \tag{7}\\
& {\left[Q_{ \pm}, N_{\mathrm{B}}\right]= \pm Q_{ \pm} \quad\left[Q_{ \pm}, N_{\mathrm{f}}\right]=\mp Q_{ \pm}} \tag{8}
\end{align*}
$$

we have thus obtained a q-superalgebra, defined by the relations (6), (7) and (8). It is seen that this q-superalgebra is generated by the set $\left\{N_{B}, N_{\mathrm{f}}, Q_{+}, Q_{-}\right\}$. Even generators N_{B} and N_{f} generate two commuting $\mathrm{U}(1)$ groups, while the odd generators $Q_{ \pm}$contain both N_{B} and N_{f} in their anticommutator. Since the odd generators $Q_{ \pm}$are nilpotent, i.e.

$$
\begin{equation*}
Q_{+}^{2}=Q_{-}^{2}=0 \tag{9}
\end{equation*}
$$

the commutation relation $\left[Q_{ \pm}, H\right]=0$ is naturally satisfied although $Q_{ \pm}$do not commute with both N_{B} and N_{f}. It means that the Hamiltonian H of the q-supersymmetric oscillator is invariant under the q-superalgebra. This is the same with the $q=1$ case [3].

In order to define q-supercoherent states and to discuss their characterization it is necessary to give a representation space. The natural choice is the super Fock space

$$
\begin{equation*}
\mathscr{F}=\left\{\left|n_{\mathrm{B}}\right\rangle \otimes\left|n_{\mathrm{F}}\right\rangle=\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle \mid\left(n_{\mathrm{B}}=0,1,2, \ldots ; n_{\mathrm{F}}=0,1\right)\right\} \tag{10}
\end{equation*}
$$

with the eigenstates of number operators N_{B} and N_{f} as basic vectors

$$
\begin{equation*}
N_{\mathrm{B}}\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle=n_{\mathrm{B}}\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle \quad N_{\mathrm{f}}\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle=n_{\mathrm{F}}\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle . \tag{11}
\end{equation*}
$$

The fermionic sector is generated by $\left|n_{\mathrm{B}}, 1\right\rangle$ for all values of n_{B}; the q-bosonic one by $\left|n_{\mathcal{B}}, 0\right\rangle$. Then starting from the q-boson vacuum state $\left|0, n_{\mathrm{F}}\right\rangle$ defined by $a_{q}\left|0, n_{\mathrm{F}}\right\rangle=0$ one can obtain the n_{B}-quanta eigenstate explicitly given by

$$
\begin{equation*}
\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle=\frac{\left(a_{q}^{\dagger}\right)^{n_{\mathrm{B}}}}{\sqrt{\left[n_{\mathrm{B}}\right]!}}\left|0, n_{\mathrm{F}}\right\rangle \tag{12}
\end{equation*}
$$

with

$$
\begin{align*}
& a_{q}^{\dagger}\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle=\sqrt{\left[n_{\mathrm{B}}+1\right]}\left|n_{\mathrm{B}}+1, n_{\mathrm{F}}\right\rangle \tag{13a}\\
& \left.\left.a_{q}\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle=\sqrt{\left[n_{\mathrm{B}}\right]}\right] n_{\mathrm{B}}-1, n_{\mathrm{F}}\right\rangle \tag{13b}
\end{align*}
$$

and

$$
\begin{array}{lrr}
f^{\dagger}\left|n_{B}, 0\right\rangle & =\left|n_{B}, 1\right\rangle & f\left|n_{B}, 0\right\rangle=0 \\
f^{\dagger}\left|n_{B}, 1\right\rangle & =0 & f\left|n_{B}, 1\right\rangle=\left|n_{B}, 0\right\rangle \tag{14b}
\end{array}
$$

where

$$
\begin{equation*}
\left[n_{\mathrm{B}}\right]!=\left[n_{\mathrm{B}}\right] \cdot\left[n_{\mathrm{B}}-1\right] \ldots[2] \cdot[1] \tag{15}
\end{equation*}
$$

Now let us define q-supercoherent states as

$$
\begin{equation*}
\mid z, \eta)=e_{q}\left(z a_{q}^{\dagger}\right)\left(1-\eta f^{\dagger}\right)|0,0\rangle \tag{16}
\end{equation*}
$$

where $e_{4}\left(z a_{q}^{\dagger}\right)$ is the q-exponential operator defined by

$$
\begin{equation*}
e_{q}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]!} \tag{17}
\end{equation*}
$$

and z is a c-number (even Grassmann number) while η is an a-number (odd Grassmann number) [13]. Using an abbreviation

$$
\begin{equation*}
\left.\mid z, n_{F}\right)=\sum_{n_{B}=0}^{\infty} \frac{z^{n_{\mathrm{B}}}}{\sqrt{\left[n_{\mathrm{B}}\right]!}}\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle \tag{18}
\end{equation*}
$$

q-supercoherent states may be rewritten as

$$
\begin{equation*}
\mid z, \eta)=|z, 0\rangle-\eta \mid z, 1) \tag{19}
\end{equation*}
$$

where the q-bosonic and fermionic sectors $\mid z, 0)$ and $\mid z, 1$) of q-supercoherent states $\mid z, \eta)$ have to be regarded as c - and a-type states, respectively. The q-supercoherent states defined by (16) are neither unity normalized nor orthogonal. Actually, we have

$$
\begin{align*}
\left(z_{1}, \eta_{1} \mid z_{2}, \eta_{2}\right) & =\left(z_{1}, 0 \mid z_{2}, 0\right)+\bar{\eta}_{1} \eta_{2}\left(z_{1}, 1 \mid z_{2}, 1\right) \\
& =\left(1+\bar{\eta}_{1} \eta_{2}\right) e_{q}\left(\bar{z}_{1} z_{2}\right) \tag{20}
\end{align*}
$$

Further, direct calculation shows that the q-supercoherent states are eigenstates of both the q-bosonic and fermionic annihilation operators a_{q} and f. Indeed, we have

$$
\begin{equation*}
\left.\left.a_{q}(z, \eta)=z \mid z, \eta\right) \quad f(z, \eta)=\eta \mid z, \eta\right) \tag{21}
\end{equation*}
$$

Note that the completeness relation for the q-bosonic coherent states can be written as [14]

$$
\begin{equation*}
\int|z\rangle_{q}\langle z| \mathrm{d} \mu(z)=\sum_{n=0}^{\infty}|n\rangle\langle n| \quad|z\rangle_{q}=\sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{[n]!}}|n\rangle \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{d} \mu(z)=\frac{1}{2 \pi} e_{q}\left(-|z|^{2}\right) \mathrm{d}_{q}|z|^{2} \mathrm{~d}(\arg z) \tag{23}
\end{equation*}
$$

is the q-integration measure, the completeness relation for the q-supercoherent states may be written in a matrix form as

$$
\begin{equation*}
\left.\int \mid z, \eta\right) D(z, \eta)(z, \eta \mid=I \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
& \mid z, \eta)=(\mid z, 0)-\eta \mid z, 1)) \tag{25a}\\
& \left(z, \eta \left\lvert\,=\binom{(z, 0 \mid}{-(z, 1 \mid \bar{\eta}}\right.\right. \tag{25b}
\end{align*}
$$

and the integration measure is denoted by a square matrix

$$
D(z, \eta)=\left(\begin{array}{cc}
\mathrm{d} \mu(z) & 0 \tag{25c}\\
0 & \mathrm{~d} \bar{\eta} \mathrm{~d} \eta \mathrm{~d} \mu(z)
\end{array}\right) .
$$

In fact, using (22), we have

$$
\begin{align*}
\left.\int \mid z, \eta\right) D(z, & \eta)(z, \eta \mid \\
& =\int\{\mid z, 0)(z, 0|+| z, 1)(z, 1 \mid \eta \bar{\eta} \mathrm{d} \bar{\eta} \mathrm{~d} \eta\} \mathrm{d} \mu(z) \\
& =\int\{\mid z, 0)(z, 0|+| z, 1)(z, 1 \mid\} \mathrm{d} \mu(z) \\
& =\sum_{n_{\mathrm{B}}}\left\{\left|n_{\mathrm{B}}, 0\right\rangle\left\langle n_{\mathrm{B}}, 0\right|+\left|n_{\mathrm{B}}, 1\right\rangle\left\langle n_{\mathrm{B}}, 1\right|\right\} \\
& =I . \tag{26}
\end{align*}
$$

Using the q-supercoherent states defined by (16), it is not difficuit to introduce the super Bargmann-Fock representation, namely

$$
\begin{align*}
& \begin{array}{l}
\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle \rightarrow x_{n_{\mathrm{B}}, n_{\mathrm{F}}}(z, \eta)=\left(\bar{z}, \dot{\eta}\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle\right. \\
\quad=\left(\bar{z}, 0\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle+\eta\left(\bar{z}, 1\left|n_{\mathrm{B}}, n_{\mathrm{F}}\right\rangle\right.\right. \\
\quad=\left(\delta_{n_{\mathrm{F}}, 0}+\eta \delta_{m_{\mathrm{F}}, 1}\right) \frac{z^{n_{\mathrm{B}}}}{\sqrt{\left[n_{\mathrm{B}}\right]!}} \\
|\psi\rangle=\sum_{n_{\mathrm{B}}}\left\{c_{n_{\mathrm{B}}}\left|n_{\mathrm{B}}, 0\right\rangle+\mathrm{d}_{n_{\mathrm{B}}}\left|n_{\mathrm{B}}, 1\right\rangle\right\} \rightarrow \psi(z, \eta)=\left(\bar{z}, \bar{\eta}|\psi\rangle=\psi \psi_{0}(z)+\eta \psi \psi_{1}(z)\right. \\
\quad=\sum_{n_{\mathrm{B}}}\left\{c_{n_{\mathrm{B}}}+\eta \mathrm{d}_{n_{\mathrm{B}}}\right\} \frac{z^{n_{\mathrm{B}}}}{\sqrt{\left[n_{\mathrm{B}}\right]!}}
\end{array}
\end{align*}
$$

where, in general, $\psi_{0}(z)=\left(\bar{z}, 0|\psi\rangle\right.$ and $\psi_{1}(z)=(\bar{z}, 1|\psi\rangle$ are analytic functions of complex variable z. In the super Bargmann-Fock space, the following expressions for
the generators of q-superalgebra can easily be derived

$$
\begin{array}{ll}
\Gamma\left(Q_{+}\right)=\eta \frac{\mathrm{d}}{\mathrm{~d}_{q} z} & \Gamma\left(Q_{-}\right)=z \frac{\mathrm{~d}}{\mathrm{~d} \eta} \\
\Gamma\left(N_{\mathrm{B}}\right)=z \frac{\mathrm{~d}}{\mathrm{~d} z} & \Gamma\left(N_{\mathrm{f}}\right)=\eta \frac{\mathrm{d}}{\mathrm{~d} \eta} \tag{28b}
\end{array}
$$

Actually, we have, for example, from (27a, b)

$$
\begin{align*}
\left(\bar{z}, \bar{\eta}\left|Q_{+}\right| \psi\right\rangle & =\left(\bar{z}, \bar{\eta}\left|a_{q} f^{\dagger}\right| \psi\right\rangle \\
& =\sum_{n_{\mathrm{B}}} c_{n_{\mathrm{B}}} \sqrt{\left[n_{\mathrm{B}}\right]}\left(\bar{z}, \bar{\eta} \mid n_{\mathrm{B}}-1,1\right) \\
& =\eta \sum_{n_{\mathrm{B}}} c_{n_{\mathrm{B}}}\left[n_{\mathrm{B}}\right] \frac{z^{n_{\mathrm{B}}-1}}{\sqrt{\left[n_{\mathrm{B}}\right]!}} \\
& =\eta \frac{\mathrm{d}}{\mathrm{~d}_{q^{z}}} \psi(z, \eta) \tag{29}
\end{align*}
$$

Furthermore, the inner product can be written by means of (24) as follows

$$
\begin{equation*}
\left.\langle\varphi \mid \psi\rangle=\int\langle\varphi| \bar{z}, \bar{\eta}\right) D(\bar{z}, \bar{\eta})(\bar{z}, \bar{\eta}|\psi\rangle . \tag{30}
\end{equation*}
$$

In addition, we can also prove that the Hermiticity properties $Q_{ \pm}^{\dagger}=Q_{\mp}, N_{\mathrm{B}}^{\dagger}=N_{\mathrm{B}}$ and $N_{\mathrm{f}}^{\dagger}=N_{\mathrm{f}}$ are entirely retained with respect to the inner product given by (30), i.e.

$$
\begin{array}{ll}
\left(\eta \frac{\mathrm{d}}{\mathrm{~d}_{q} z}\right)^{\dagger}=z \frac{\mathrm{~d}}{\mathrm{~d} \eta} & \left(z \frac{\mathrm{~d}}{\mathrm{~d} \eta}\right)^{\dagger}=\eta \frac{\mathrm{d}}{\mathrm{~d}_{q} z} \\
\left(z \frac{\mathrm{~d}}{\mathrm{~d} z}\right)^{\dagger}=z \frac{\mathrm{~d}}{\mathrm{~d} z} & \left(\eta \frac{\mathrm{~d}}{\mathrm{~d} \eta}\right)^{\dagger}=\eta \frac{\mathrm{d}}{\mathrm{~d} \eta} \tag{31b}
\end{array}
$$

For example, using (30), we get

$$
\begin{align*}
&\langle\varphi| Q_{+}|\psi\rangle=\int\left(\bar{\varphi}_{0}(z)\right. \\
&\left.\bar{\eta} \bar{\varphi}_{1}(z)\right) D(\bar{z}, \bar{\eta})\left(\eta \frac{\mathrm{d}}{\mathrm{~d}_{q} z}\right)\binom{\psi_{0}(z)}{\eta \psi_{1}(z)} \\
&=\int\left(\bar{\varphi}_{0}(z) \quad \bar{\eta} \bar{\varphi}_{1}(z)\right) D(\bar{z}, \bar{\eta})\binom{0}{\eta \frac{\mathrm{~d}}{\mathrm{~d}_{q^{2}}} \psi_{0}(z)} \tag{32}\\
&=\int \bar{\varphi}_{1}(z) \frac{\mathrm{d}}{\mathrm{~d}_{q} z} \psi_{0}(z) \mathrm{d} \mu(z) .
\end{align*}
$$

On the other hand, we have

$$
\begin{equation*}
\int \overline{\left(z \frac{\mathrm{~d}}{\mathrm{~d} \eta}\right)}\left(\bar{\varphi}_{0}(z) \quad \bar{\eta} \bar{\varphi}_{1}(z)\right) D(\bar{z}, \bar{\eta})\binom{\psi_{0}(z)}{\eta \psi_{1}(z)}=\int \bar{z} \bar{\varphi}_{1}(z) \psi_{0}(z) \mathrm{d} \mu(z) \tag{33}
\end{equation*}
$$

Using the q-analogue of Euler's formula for $\Gamma(x)$ in [14], it is not difficult to prove that

$$
\begin{equation*}
\int \bar{z} \bar{\varphi}_{1}(z) \psi_{0}(z) \mathrm{d} \mu(z)=\int \bar{\varphi}_{1}(z) \frac{\mathrm{d}}{\mathrm{~d}_{q} z} \psi_{0}(z) \mathrm{d} \mu(z) \tag{34}
\end{equation*}
$$

for any analytic functions $\varphi_{1}(z)$ and $\psi_{0}(z)$. It means that

$$
\left(\eta \frac{\mathrm{d}}{\mathrm{~d}_{q} z}\right)^{\dagger}=z \frac{\mathrm{~d}}{\mathrm{~d} \eta} .
$$

It is obvious that the success in super Bargmann-Fock representation follows from the completeness relation, which belongs to the entire super Fock space. As far as I know, there was a similar completeness relation for supercoherent states in [2], but its identity operator acts in the space of even states only.

Finally, we have to point out that the q-deformed fermion creation and annihilation operators introduced by Parthasarathy and Viswanathan in [7] are not necessary to satisfy ($4 a$), so that not only the $n(n>1) q$-fermion states may be defined, but also, in general, the odd generators $Q_{ \pm}$in [7] do not satisfy (9). Therefore, the q-deformed superalgebra defined by (6), (7) and (8) are explicitly different from the one defined by (21) in [7]. If we assume that the q-deformed fermion creation and annihilation operators have to satisfy ($4 a$), which arises from Pauli's exclusion principle, the q-deformed fermion will be equivalent to the ordinary one [8,9]. That is why we reconstruct the q-supersymmetric oscillator and q-superalgebra by using q-boson and ordinary fermion creation and annihilation operators.

In addition, it is worth noticing that the q-supercoherent states defined by (16) are nothing but a natural and reasonable extension of q-oscillator coherent states. In fact, the q-bosonic sector $\mid z, 0$) in (19) is the same as the q-analogue of the Heisenberg-Weyl (Hw) coherent states introduced in [15, 16].

References

[1] Klauder J R and Skagerstam B S 1985 Coherent States; Applications in Physics and Mathematical Physics (Singapore: World Scientific)
[2] Fatyga B W, Kostelecký V A, Nieto M M and Truax D R 1991 Phys. Rev. D 431403
[3] Bérubé-Lauzière Y and Hussin V 1993 J. Phys. A: Math. Gen. 266271
[4] Le-Man Kuang and Gao-Jian Zeng 1993 Commun. Theor. Phys. 19447
[5] Le-Man Kuang 1992 J. Phys. A: Math. Gen. 254827
[6] Le-Man Kuang, Gao-Jian Zeng and Fa-Bo Wang 1993 J. Phys. A: Math. Gen. 264011
[7] Parthasarathy R and Viswanathan K S 1991 J. Phys. A: Math. Gen. 24613
[8] Sicong Jing and Jian Jun Xu 1991 J. Phys. A: Math. Gen. 24 L89]
[9] Bonatsos D and Daskaloyannis C 1993 J. Phys. A: Math. Gen. 261589
[10] Gendenshtein L E and Krive I V 1985 Sov. Phys. Usp. 28645
[11] Biedenharn LC 1989 J. Phys. A: Math. Gen. 22 L873
[12] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
[13] De Witt B 1984 Supermanifolds (Cambridge: Cambridge University Press)
[14] Gray R W and Nelson C A 1990 J. Phys. A: Math. Gen. 23 L945
[15] Kulish P P and Damaskinsky E V 1990 J. Phys. A: Math. Gen. 23 L415
[16] Solomon A I and Katriel J 1990 J. Phys. A: Math. Gen. 23 L1209

[^0]: \dagger Mailing address: Department of Physics, Nanchang University, Jiangxi 330047. People’s Republic of China.

