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q-supercoherent states 
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CCAST (World Laboratory), PO Box 8730. Beijing 100080, People’s Republic of China 

Received 3 May 1994, in final form 28 June 1994 

Abstract. A q-analogue of the supersymmetric oscillator is constructed out of q-boson and 
ordinary fermion creation and annihilation operators. q-supercoherent states are explicitly 
obtained for the q-deformed supersymmetric oscillator. They are shown to be eigenstates 
of bofh q-boson and fermion annihilation operators and to satisfy a completeness relation. 
The representation of the q-deformed superalgebra in super Bargmann-Fock space is also 
discussed by means of the 9-supercoherent states. 

The coherent-state method [ I ]  is a very powerful and elegant method for the study of 
algebra (or group) representations. Recently, this method has been used for the study 
of superalgebras [Z-41 and q-deformed superalgebras [5,6]. In 171, a q-analogue of the 
supersymmetric oscillator and corresponding q-superalgebra were constructed out of 
q-boson and q-fermion creation and annihilation operators. Because of the equivalence 
of both the q-deformed fermion and the ordinary fermion [8,9], therefore, it is worth 
reconstructing the q-deformed supersymmetric oscillator and q-superalgebra by using 
q-boson and ordinary fermion creation and annihilation operators. Furthermore, q- 
supercoherent states as well as super Bargmann-Fock space have been introduced for 
the study of the q-supersymmetric oscillator and corresponding q-superalgebra. It can 
be seen that some new results obtained here are different from those in [7]. 

In the ordinary supersymmetric theory the superalgebra [IO] is generated by H ,  Q+ 
and Q-, where H (Hamiltonian) is the even generator and Q* are the odd generators 
of the superalgebra. They satisfy the following relations 

{ Q + ,  Q - } = H  [Q*i,Hl=O. (1) 

In order to construct the q-deformed superalgebra for the q-analogue of the supersym- 
metric oscillator, first of at1 we have to introduce the q-deformed boson oscillator 
[ l l ,  121, whose algebra {aq, a:, N B }  are defined by 

[a,. 41 = [NB + 1 I - [NBI ( 2 4  

INB, aiI=d, [NB, a,] = -a, (26) 
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where 

In addition we introduce further the ordinary fermion creation and annihilation opera- 
tors f 'andj; respectively, and the femu'on number operator Nr= f 9 As is well known, 
they satisfy the following relations 

( j y } = I  f ' 2 = f 2 = 0  ( 4 4  

INr,f tl=ft "f 1 = -5 (46) 
Now let us discuss the q-supersymmetric oscillator. Defining the odd generators Qi 

by 

Q+ = a q f +  e-=.: f ( 5 )  
which convert a q-boson into an ordinary fermion and vice versa, respectively, the 
Hamiltonian H of the q-supersymmetric oscillator may be written as 

H =  {e+,  e- } = [NB 1 + ( [ N B  + 11 - [Ne I)Nr. (6)  

It is obvious that in the q= 1 case the Hamiltonian H given by ( 6 )  coincides with that 
of the supersymmetric oscillator [3]. Along with operators NB and Nr, some more 
relations can be also derived easily 

[NB, Nf 1 = 0 (7) 

[Qi, NBI=*Qt [Q+ 3 Nr 1 =F Q* (8) 

we have thus obtained a q-superalgebra, defined by the relations (6), (7) and (8). It is 
seen that this q-superalgebra is generated by the set { N E ,  Nr, Q+, Q- }. Even generators 
NB and Nr generate two commuting U( 1) groups, while the odd generators Qt contain 
both NB and Nr in their anticommutator. Since the odd generators Ql are nilpotent, 
i.e. 

Q:=Q?=o (9) 
the commutation relation [e*, H]=O is naturally satisfied although Q* do not com- 
mute with both Ns and Nf. It means that the Hamiltonian H of the q-supersymmetric 
oscillator is invariant under the q-superalgebra. This is the same with the q= 1 case [3]. 

In order to define q-supercoherent states and to discuss their characterization it is 
necessary to give a representation space. The natural choice is the super Fock space 

gE={lnB)OlflF)=lflB,flF)I(nB=O, 192,. .. ; f l F = O ,  I)} 

N B  InB 3 n F  > = n B b B ,  nF ) N h ,  n F ) = n F l n B ,  n F > .  

(10) 

(11) 

The fermionic sector is generated by InB, 1) for all values of nB; the q-bosonic one by 
Ine.0). Then starting from the q-boson vacuum state IO, n ~ )  defined by a,10,n~)=O 
one can obtain the ne-quanta eigenstate explicitly given by 

with the eigenstates of number operators Ne and Nr as basic vectors 
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with 

a:lng, nF > = &Fh + 1, nF> (13a) 

u g h ,  nF ) = J L J l n B  - 1 ,  nF ) ( 13b) 

ftln890>=lnB, 1) f O > = O  (144 

f ' l n 8 .  1>=0 f l n B .  l>=/nB,o> (146) 

and 

where 

[nB]!=[nB]. [nB-l] . . . [  21. [ l] .  (15) 

12, t l )=eq(4) ( l  -$+)IO, 0) (16) 

Now let us define q-supercoherent states as 

where e,,(za:) is tbe q-exponential operator defined by 

(17) 
- x" 

q ( x ) =  - 
n = o  In]! 

and z is a e-number (even Grassmann number) while 17 is an a-number (odd Grassmann 
number) [13]. Using an abbreviation 

q-supercoherent states may be rewritten as 

Iz, 17)=1~>0)-171~> 1) (19) 

where the q-bosonic and fermionic sectors Iz, 0) and I-, 1) of q-supercoherent states 
Iz, 17) have to be regarded as c- and a-type states, respectively. The q-supercoherent 
states defined by (16) are neither unity normalized nor orthogonal. Actually, we have 

(21, 1 7 1  122, 7?2)=(zI,oIz*. O)+tj,172(z1, 1122, 1) 

=(l+i1112)e,(%~2). (20) 

Further, direct calculation shows that the q-supercoherent states are eigenstates of both 
the q-bosonic and fermionic annihilation operators a, andf: Indeed, we have 

aqlz, 'I)=zIz, 17) flA 17)=7?lz, 17). (21) 

Note that the completeness relation for the q-bosonic coherent states can be written 
as [14] 

where 
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is the q-integration measure, the completeness relation €or the q-supercoherent states 
may be written in a matrix form as 

and the integration measure is denoted by a square matrix 

In fact, using (22), we have 

SIz, rl)D(-. rl)(z, 81 

Using the q-supercoherent states defined by (16), it is not difficult to introduce the 
super Bargmann-Fock representation, namely 

be .  nF)+xne.&, q)= (E  i lne .  ?IF) 

=(?,OlnB,nF)+ q ( a  llnB,nF) 

where, in general, wo(z) =(2,01 y )  and y,( ; )  = (2, 1 I y )  are analytic functions of com- 
plex variable z.  In the super Bargmann-Fock space, the following expressions for 
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the generators of q-superalgebra can easily be derived 

f -  1 

= fl C ~ B [ ~ ~ B I  - 
=B m 

d$ 

d 
= rl - v(z, VI. 

Furthermore, the inner product can be written by means of (24) as follows 

<qlv>= ( q k  W ( Z ,  il)(Z. 61 U/>. (30) s 
In addition, we can also prove that the Henniticity properties QL=Qr, NL=NB and 
N:= Nr are entirely retained with respect to the inner product given by (30), i.e. 

For example, using (30), we get 

On the other hand, we have 
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Using the q-analogue of Euler's formula for r ( x )  in 1141, it is not difficult to prove 
that 

for any analytic functions pl(z) and yo(z). It means that 

It is obvious that the success in super Bargmann-Fock representation follows from 
the completeness relation, which belongs to the entire super Fock space. As far as I 
know, there was a similar completeness relation for supercoherent states in 121, but its 
identity operator acts in the space of even states only. 

Finally, we have to point out that the q-deformed fermion creation and annihilation 
operators introduced by Parthasarathy and Viswanathan in [7] are not necessary to 
satisfy (k), so that not only the n (n>  1) q-fermion states may be defined, but also, in 
general, the odd generators Q* in [7] do not satisfy (9). Therefore, the q-deformed 
superalgebra defined by (6), (7) and (8) are explicitly different from the one defined by 
(21) in [7]. If we assume that the q-deformed fermion creation and annihilation opera- 
tors have to satisfy (4u), which arises from Pauli's exclusion principle, the q-deformed 
fem'on will be equivalent to the ordinary one [S, 91. That is why we reconstruct the 
q-supersymmetric oscillator and q-superalgebra by using q-boson and ordinary fermion 
creation and annihilation operators. 

In addition, it is worth noticing that the q-supercoherent stat- defined by (16) are 
nothing but a natural and reasonable extension of q-oscillator coherent states. In fact, 
the q-bosonic sector Iz, 0) in (19) is the same as the q-analogue of the Heisenberg-Weyl 
(HW) coherent states introduced in [15, 161. 
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